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Abstract

This article presents a first step towards the definition of a visual guide for communicating uncertainty
which is to fit into existing visualisation frameworks and toolkits. The first entry in our guide is made by a set
of visual variables appropriate for representing areal uncertainty in algorithm mechanics. Such visualisations
show users how data points are distributed in the classification space and allow them to understand the
“goodness-of-fit” of their data to the algorithm. This is important for Visual Analytics applications, which
combine information visualisation with information mining techniques in an interactive decision-making
process. Model uncertainties stemming from widely spread data points need to be visualised so that the
user can make adjustments and improve the analysis.
To capitalise on established knowledge and meaning, we explore whether popular visual variables for

representing areal uncertainty in the domain of geospatial visualisation may also be effective for representing
uncertainty in the visualisation of the mechanics of K-means clustering and Linear Regression algorithms, as
both use a spatial distribution of data points. In a study with 500 participants we find that overall the visual
means opacity performs best, followed by texture, but that grid and blur may be unsuitable for quantifying
uncertainty. The performance of contour lines appears to depend on the algorithm visualisation. Using
this study, we extend the validity of a set of domain-specific findings from geospatial visualisation to the
visualisation of algorithm mechanics and use these to form the first building blocks of a cross-disciplinary
visual guide for representing uncertainty, laying promising foundations for future work.
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1. Introduction

Visual Analytics is increasingly applied in a va-
riety of application domains, including health and
engineering [1], financial analysis [2], and Learning
Analytics [3]. By allowing expert users to alter pa-5

rameters to influence algorithms, the visualisation
of data changes and provides insight and under-
standing [4, 5]. In recent years, there has been a
growing interest by scholars not proficient in data-
processing and visualisation to also employ such10

tools for their research [6, 7]. While these users are
experts in their own domain, they may be laymen
in the field of data science. To help researchers who
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lack such skills, a variety of frameworks and toolk-
its exists [8, 9, 10, 11]. These either automatically15

choose the right presentation for a certain type of
data, or allow users to build their own visualisations
using a library of widgets.

However, datasets may be incomplete, devices
inaccurate and predictions based on incorrect as-20

sumptions [12]. This introduces various types of
uncertainty, the display of which is not adequately
considered in these powerful toolkits used by users
not experienced in visual data analysis. Simply
giving a numerical quality estimate of a prediction25

based on such data may not be enough [13]. It is
therefore necessary to not only visualise the classi-
fication space of an algorithm used for a prediction
or visualisation, but also to explore how different
types of uncertainty are best represented to such30
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“laymen” and to provide a visual guide, whose rec-
ommendations can be implemented into established
frameworks to address this omittance.
This is especially important, as the capabili-

ties of data-processing experts and laymen to cor-35

rectly interpret visualisations and their uncertainty
representations may diverge [14]. Whereas data-
processing experts may be well-versed in engaging
with complex visualisations in Visual Analytics ap-
plications, users without a background in data sci-40

ence who want to use such applications for their
own research (for example in the humanities) are
likely to struggle with interpreting the visualisa-
tions and thereby may be unable to use these tools
effectively in the sense-making process [15].45

Steering an algorithm and having the results in-
stantly displayed is a key feature of Visual Analytics
applications [1]. To increase user trust and to im-
prove accuracy, showing the algorithm’s workings
is helpful, as this allows users to better understand50

how and why a prediction or attribution to a cer-
tain class is made [16]. By visually analysing the
classification space, users can change algorithm pa-
rameters or edit the data set to improve the result
of the analysis.55

Popular algorithms used in Visual Analytics ap-
plications for classification and prediction include
K-means clustering and Linear Regression. Due to
their simplicity, they are easy to deploy and quick to
compute and therefore frequently used. Yet, both60

may be subject to areal uncertainty, meaning that
depending on a data point’s distance to the cen-
troid (K-means) or trend line (Regression), a class-
attribution or compliance with a prediction may be
increasingly uncertain. As a result, visualisations of65

the mechanics of such algorithms, that are to sup-
port the user in the decision-making process, may
hold areas in which their validity in representing
certain data points is reduced. This in turn can
explain why the overall prediction quality is low,70

or indicate that possible groupings in clusters, es-
pecially for certain data points, should be inter-
preted with caution. This may prompt users to ad-
just their level of trust into the analysis result or to
take action and tighten the algorithm’s parameters75

to iteratively improve the outcome.
For example: If the user sees how far some data

points are located from the regression line in a Lin-
ear Regression, they can decide to either adjust the
weighting of these or to remove them to increase the80

model’s prediction accuracy. Similarly, data points
far away from a cluster’s centre in a K-means clus-

tering algorithm can be identified and the algorithm
adjusted to improve classification accuracy and to
reduce “fuzzy” labelling. Therefore, a graphical85

representation of uncertainty inside the classifica-
tion space that communicates the “goodness of fit”
of various data points to the model, may be much
more effective than a numeric indicator of the over-
all prediction quality [13].90

Similarly to the visualisations of algorithm me-
chanics in Visual Analytics applications, geospa-
tial visualisations may show spatially distributed
data which in some areas may not be clearly classi-
fied due to imperfect measurements or mixed struc-95

tures, thereby being subject to “attribute” uncer-
tainty. This type of uncertainty describes the con-
fidence with which an area in the visualisation may
be attributed to a certain class, ranging from sim-
ple land cover classifications [17] over water salinity100

levels [18] to demographic constellations [19]. This
suggests that geospatial visualisation and algorithm
visualisation share a common type of uncertainty
for which the former seems to have devised an ef-
fective representation through a large body of work105

that is lacking from the latter.

With both domains having to deal with areal un-
certainty, the question arises whether the means to
represent uncertainty in the domain of geospatial
visualisation could be transferred to the domain of110

algorithm visualisation. In this context we define
geospatial visualisation to be the “source” domain
from which the representation of uncertainty is to
be transferred. The receiver of this representation,
the “target” domain, is to be the domain of Visual115

Analytics and Information Visualisation, where an
established, clear definition of uncertainty represen-
tation is still missing.

Taking into account the extension of Visual An-
alytics to users groups not necessarily familiar with120

data processing and visualisation [6, 20, 7], a vi-
sual guide that is to enrich existing frameworks
and toolkits with adequate representations of un-
certainty needs to provide visual means and depic-
tions that are effective and easily understood by125

laymen. To define the first building blocks of such
a guide, we propose a set of research questions:

1.1. Research Questions

• Can the most popular visual variables
for representing areal uncertainty in130

geospatial visualisation be successfully
applied to representing areal uncertainty
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in the visualisation of algorithm me-
chanics for non-experts?

• Which visual variable is most suitable?135

• Do our findings comply with those of
previous work in the domain of geospa-
tial visualisation regarding efficiency
and user preference?

1.2. Contribution140

By exploring the above research questions, this
article makes the following contributions:

1. We implement the first exploration of the
transferability of uncertainty representation
from the domain of geospatial visualisation to145

that of algorithm-mechanics visualisation, fo-
cussing on K-means clustering and Linear Re-
gression.

2. We find that in general, opacity may be the
most suitable visual variable, followed by tex-150

ture. This corresponds to findings of previous
work in geospatial visualisation and demon-
strates the transferability of these visual means
between the two domains. The efficiency
of contour lines may be dependent on the155

algorithm-mechanics to be visualised.

3. We report the first quantitative evaluation of
users’ ability to correctly retrieve uncertainty
values using the variable grid method [21]. We
find that this visual means, together with blur,160

is not suitable for reliable quantification of
uncertainty in the visualisations of algorithm-
mechanics.

4. Our study focuses on laymen’s ability to assess
uncertainty. The findings may thus be appli-165

cable to a range of applications that are not
solely used by data-processing experts.

5. With the help of the above points, our work
lays the foundations for the definition of an
interdisciplinary visual guide for representing170

uncertainty. This guide can plug into existing
frameworks and toolkits to enrich their visu-
alisations and may serve as a basis for further
research aiming to define empirically validated
representations of other types of uncertainty.175

1.3. Structure

This article is structured as follows: In a liter-
ature survey, we first review work undertaken in
the domains of Information Visualisation and Vi-
sual Analytics. We then review uncertainty visuali-180

sations in the well-established domain of geospatial
visualisation and define five popular visual means
that might be transferable to the domain of Visual
Analytics.
The main part of the article is formed by a user185

study, where we explore effectiveness and usabil-
ity of these visual means by analysing quantitative
and subjective data derived from 500 users trying
to determine varying degrees of uncertainty in two
algorithm visualisations.190

After this part, the research questions are an-
swered and our findings defined as building blocks
of a visual guide for representing uncertainty. We
then discuss our work with regards to that of other
researchers to describe how it can be implemented195

to extend their applications and support users in
the decision-making process. The article concludes
with the identification of avenues for future work
and a discussion of the study’s limitations.

2. Previous work200

This section will review previous work from the
fields of Visual Analytics, visualisation toolkits and
languages, and geospatial visualisation to help the
reader understand the rationales of our research
questions. To simplify the structure, the most rele-205

vant work is reviewed separately.

2.1. Visual Analytics and Uncertainty

Since the term’s original definition by Cook and
Thomas [22], the use of Visual Analytics [1] to sup-
port decision making has grown continuously. Vi-210

sual Analytics extends interaction with traditional
information visualisation techniques with facilities
for updating, steering, and improving the analytic
processes. The key objective is to incorporate feed-
back from end-users to improve an automatic anal-215

ysis. Daniel Keim, one of the pioneers of Visual
Analytics, recently presented his thoughts on its
use for gaining insights into linguistic data, quot-
ing Albert Einstein:
“Computers are incredibly fast, accurate and220

stupid, humans are incredibly slow, inaccurate, and
brilliant. Together they are powerful beyond imagi-
nation.”
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Whereas traditionally Visual Analytics applica-
tions have been used by experts in domains such225

as engineering and finance [1, 2], trend analysis in
large datasets [23], or the control of process compli-
ance with an ideal model [24], there is an increas-
ing interest in scholars from “soft sciences”, such as
learning [3] or digital humanities [6, 20], to apply230

Visual Analytics to support their work.
For the latter field, one particularly interesting

piece of work is the interactive visual analysis of
German poetics by John et al. [7]. In their work,
the authors visualise text alignment and focus on235

improving alignment algorithms in an iterative and
integrated process. Examples from the domain of
Information Visualisation include timeline visuali-
sation and geographic maps to study the history of
philosophical ideas [25], and a node-link diagram240

that shows relationships between people [26]. Such
set-based visualisations focus on representing rela-
tionships between clusters or sets, which is a com-
mon task in many visual analysis scenarios [27].
This applies to linguists who may group words into245

semantic categories when analysing a document,
and sociologists who group people into communi-
ties to study their relationships when analysing so-
cial networks.
Especially the work of John et al. [7] illustrates250

that visualisation is not only used as a means of
presenting the end results of an analytic process,
but rather as a fundamental part of the analysis
itself, allowing users to evaluate data at all stages
of the text-mining and sense-making process: From255

the initial stages of data exploration and hypothe-
sis evaluation, over user-driven feedback for refin-
ing text-mining rules and parameters, to generating
new hypotheses and questions.
However, despite the advancement of Visual An-260

alytics and Information Visualisation to these “soft
sciences”, little work has been done to enable non-
experts in data-processing to conduct and steer
complex analysis tasks [5]. While these users are
experts in their own domains, they usually have lit-265

tle expertise in data-processing and visualisation,
and may be called laymen in this regard. This lack
of skills leads to a common pattern where the ana-
lytical task is shared by two user roles [28]: In a first
step, the domain expert but non data-processing270

expert (e.g. a humanities scholar or teacher) de-
fines criteria for useful data and requirements for
the analysis. In a second step, a data-processing
expert – usually ignorant of the domain – is respon-
sible to choose, modify, and integrate automated275

and visual analysis methods. Although such an ap-
proach is feasible and has resulted in several inter-
esting prototypes that can be used by non-technical
users (for instance to analyse risk and uncertainty
in financial data [29]), it is also constrained by sev-280

eral limitations.
The main issue with decoupling the data-

processing design from the data-processing use is
the loss of vital information necessary to under-
stand the analysis. The most impactful problem285

in the visual translation is the suppression of data
uncertainty and quality information in favour of vi-
sual simplicity and clarity. Yet, dealing with un-
certainty and trust in Visual Analytics is nontrivial
due to the large amount of noise and missing values290

originating from heterogeneous data sources, as well
as bias introduced by automated analysis methods
and human perception [30].

To face this problem, the notion of data qual-
ity and the confidence of the analysis algorithm295

need to be appropriately represented. The ana-
lysts need to be aware of the uncertainty and be
able to read quality properties at any stage of the
process. Whereas several approaches have been re-
searched under the umbrella of “data wrangling”300

[31], most of this work concentrates on preprocess-
ing data (i.e. data entry, data (re)formatting, data
cleaning, etc.). Yet, what constitutes an error is
often context-dependent and requires the human
judgement of domain experts [32]. As this is vital305

to the sense-making process, there is a need to re-
search how such variables can be represented along-
side with the outcomes of an iterative analysis. So
far, little work has been done on this topic [33].

To address this, Sanyal et al. [34] conducted re-310

search into specific techniques for uncertainty vi-
sualisation, while Skeels et al. [35] explored what
uncertainty itself entails. However, existing work
tends to concentrate on preprocessing data be-
fore such data is used in applications [31], rather315

than looking at how to communicate quality indica-
tors to support decision-making by domain experts.
Therefore, when aiming to define a visual guide for
the representation of uncertainty in Visual Analyt-
ics applications, it is imperative to focus on forms320

that can be correctly interpreted by domain-experts
and data-processing experts alike.

2.2. Visual Languages and Visualisation Toolkits

Especially in the domain of computer science, a
lot of effort has gone into simplifying complex pro-325

cesses into representations that can be understood
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by non-experts. A prominent example is the visual-
isation of algorithm mechanics into flow charts for
computer programming classes [36]. By replacing
programming instructions with a visual representa-330

tion that summarises long steps of code and high-
lights important decision components, researchers
have reported an increase in confidence as well as
a reduction of errors and task completion times for
students [37], especially when these visualisations335

could be manipulated interactively [38].
On a more formal basis, such a transformation

of sets of instructions into graphical modules or
glyph-based notations is described by the field of
visual languages in computing [39]. With the help340

of various specification formalisms, visual languages
translate complex processes into abstract depictions
that can be understood by non-computer scientists
and employed by these for otherwise hard-to accom-
plish tasks.345

Using such a visual language and combining
building blocks of graphical and textual elements,
users can intuitively define behavioural require-
ments for algorithms [40] and have the process
of probabilistic reasoning explained to them in an350

easy-to-understand manner [41]. This way, non-
experts may gain insight and understanding into an
otherwise “black box” system [42]. Beyond process
explanation, visual languages are also used to con-
ceptually design structures that have several layers355

of complexity and interactions that are difficult to
keep in mind with every step of the design pro-
cess. Here, the transformation into a symbolic rep-
resentation hides unnecessary convolution from the
design phase, allowing the user to focus while the360

computer automatically ensures adherence to con-
structional constraints [43].
In a more casual context, visual languages are

used to support laymen with the creation of games.
By simplifying game mechanics into a set of graph-365

ical, interconnected building blocks that form a li-
brary of actions and meanings, non-programmers,
such as educators outside the field of computing,
can build computer games themselves and focus
on content creation and story line, rather than on370

the acquisition of programming skills [44, 45]. The
power of visual representation for describing com-
plex coherences is even being employed to support
managers in understanding organisational struc-
tures and optimising workflows [46].375

Similar efforts have been made in the field of
Visual Analytics and Information Visualisation to
empower laymen with specialist skills through sim-

plification and modularity: Ren et al. present a
toolkit for the rapid prototyping of Information Vi-380

sualisation applications by allowing users to select
matching visualisations for their data from a li-
brary of widgets [8], as do Elias and Bezerianos [9].
Similarly, Howe et al. [10] provide a library of vi-
sual elements to “assist scientists and researchers in385

creating interactive visual dashboard applications
in seconds with no programming necessary” [10].
More recently Wongsuphasawat et al. [11] presented
“Voyager”, a software that automatically suggests
matching visualisations for certain types of data to390

allow laymen to present their findings in an ade-
quate manner, without design knowledge.

However, while allowing laymen to create visu-
alisations, none of the discussed frameworks and
toolkits appear to provide visual means for repre-395

senting uncertainty in their output.

2.3. The Representation of Uncertainty in Geospa-
tial Visualisations

A lot of work has been undertaken to represent
uncertainty in cartography and geovisualisation, us-400

ing intrinsic approaches (manipulation of the vi-
sual properties of map content) and extrinsic ap-
proaches (addition of graphical elements). A typi-
cal example of intrinsic representation may be the
manipulation of colour: Howard and MacEachren405

[47] use saturation to depict different levels of un-
certainty of nitrogen distribution in a bay (Fig. 1,
left). Similarly, Osorio and Brodlie [48] use vary-
ing colour hues and noise for representing different
degrees of uncertainty relating to oceanic topogra-410

phy. In a geographic context, Davis et al. [17] use
lightness of colour to indicate uncertain classifica-
tion of land cover types, as do Bastin et al. [49] and
Hengl [50], who employ colour “whiteness” for this
purpose. Pang [51] discusses uncertainty visuali-415

sation for natural hazards and presents work that
utilises colour intensity to differentiate between re-
gions with different probabilities of an earthquake
occurring. Lightness of colour is also utilised by
Ban and Ahlqvist [19] and Slingsby et al. [52], how-420

ever not for highlighting the uncertainty of land
cover type classification, but that of demographic
structures (Fig. 1, right). Finally, Berjawi et al.
[53] explore the combined use of transparency, a
blurred glyph, and a thermometer glyph to express425

different types of uncertainty on a map visualisa-
tion. Although only providing a prototype imple-
mentation, they report that opacity works well as a
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Figure 1: Left: Figure taken from [47]. Howard and
MacEachren map uncertainty levels to colour saturation
ranges. Right: Figure taken from [52]. Slingsby et al. use
colour lightness to represent attribute uncertainty. Permis-
sion to reprint has been granted for both figures.

general indicator of uncertainty for a point of inter-
est, whereas detail provided on-demand can benefit430

from an additional blur graphic as well as a ther-
mometer glyph to express location and attribute
uncertainty.

To indicate uncertainty of positional data,
Alesheikh et al. [54] employ “probability contours”435

that show intervals between which an uncertain
data point may be placed. Similarly, Dutton [55]
uses varying contour widths. Building on these ap-
proaches is the work of Edwards and Nelson [56],
who explore the use of fill lightness as well as con-440

tour lightness for representing areal uncertainty.
Varying contours (together with colour) are also
used by more contemporary work, such as that of
Brodlie et al. [57], who present the use of a “contour
band” and a “spaghetti plot” to show alternative445

dimensions of oceanographic topography, and that
of Bloch et al. [58] and Stamen Design [59], who
use varying contours and colour to represent possi-
ble variations of strength and direction of tropical
storms. Lastly, Spiegelhalter [60] employs changing450

contours to separate different confidence intervals
in a visualisation of health institution performance.

Another means to display uncertain geographic
boundaries is blur, as used by Burrough [61] for
the visualisation of “fuzzy geographical objects”.455

This is also discussed by MacEachren [62] (Fig. 2)
who refers to this as “contour crispness”, which is
similar to the display of a “contour band” or the
“spaghetti plots” used by Brodlie et al. [57], but
with an applied gradient for transparency. Gershon460

[63] also employs blur to highlight uncertain areas
in the distribution of sea-surface temperature data,
as do Djurcilov et al. [18] for indicating areas in

Figure 2: Figure taken from [62]. MacEachren uses a
dithered blur effect to represent the uncertain area of a risk
zone. Image is licensed under CC BY 4.0. Permission to
reprint has been granted.

which the degree of water salinity may be uncertain.
The discussed intrinsic representations of uncer-465

tainty have the benefit of integrating data quality
into the data’s actual presentation, reducing clutter
by reducing the amount of visual elements. How-
ever, extrinsic representations of uncertainty have
also been shown to have their merits, and distinc-470

tion between these two types does not always ap-
pear straightforward. For example, Buttenfield [64]
discusses the work of Andrle and Carrol, who use
texture for visualising attribute uncertainty of bird
sightings (Fig. 3, left). Kinkeldey et al. [65, p. 379]475

argue that although texture is regarded as an over-
lay element and thus extrinsic, the visual result of
integrating it into a map area may lead to it being
categorised as intrinsic. Similarly, Clementini and
Di Felice [66] combine a contour band with texture480

to visualise boundary uncertainty of geographic ob-
jects, suggesting this to also be an intrinsic repre-
sentation of uncertainty. A clearer distinction may
be made for the use of a secondary display, such as
an adjacent map, where one map displays the data,485

and another the uncertainty [62]. Other implemen-
tations of this concept can be found in the work of
Lucieer and Kraak [67], who use multiple map dis-
plays to separate the display of the classification of
different urban areas from its quality. However, this490

approach may be criticised for requiring extensive
eye movement and reorientation, making some re-
searchers doubt it’s suitability for simple represen-
tations of uncertainty when compared to intrinsic
approaches [65].495

A technique that attempts to addresses this prob-
lem is the use of grids: Kinkeldey et al. [68] and
Cedilnik and Rheingans [69] use a grid laid over a
vegetation landcover map. Whereas coloured ar-
eas on the map describe the classification type, the500

“noisiness” of the grid lines represents the uncer-
tainty of class attribution in a certain area, reducing
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Figure 3: Left: Figure taken from [64]. Buttenfield shows
how texture is used to express attribute uncertainty on an
ecological map for bird sightings. Right: Figure taken from
[21]. Bauer and Rose use varying grid sizes to represent
uncertainty in spatial data. Permission to reprint has been
granted for both figures.

the need for eye movement. Also manipulating the
contours of a grid are Hunter and Goodchild [70],
who, similar to the “spaghetti plots” [57], use mul-505

tiple alternative versions laid on top of each other
to indicate classification uncertainty in a geospatial
visualisation application. Rather than altering grid
contours, Bauer and Rose [21] represent uncertainty
by varying grid size: A smaller grid unit means high510

certainty, a larger one low certainty (Fig. 3, right).

Another example of extrinsic uncertainty repre-
sentation is the use of glyphs – additional objects,
such as bars or icons, laid over a map. Following
this concept, Cliburn et al. [71] employ coloured515

glyphs to indicate uncertainties in predicted water
balance levels to support decision-making. Sanyal
et al. [72] use glyphs together with other visual
means to present uncertainty in conglomerates of
weather variables. The authors report that experts520

found this type of visualisation useful for finding
outliers in the data. A comparison of several in-
trinsic and extrinsic uncertainty representations in
volumetric data is given by Newman and Lee [73].
They found that multi-point glyphs and ball and525

arrow glyphs performed best and therefore form an
argument for the use of extrinsic representations of
uncertainty. However, results were derived from a
sample of 21 research scientists and students with
a high degree of computer literacy who can not be530

considered laymen in terms of data-processing and
visualisation. In addition, Pang [74] suggests that
glyphs may be “visually overwhelming”, as focus
may be on the glyphs and distract users from the
actual data visualisation.535

As opposed to static representations of uncer-

tainty, some authors use animation [75] to empha-
sise areas of low data quality or even sound [76].
Although innovative extensions to the visual layer,
differentiation between different uncertainty types540

may be difficult and may require additional cogni-
tive capacity.

Overall, a plethora of approaches exists for rep-
resenting uncertainty in the domain of geospatial
visualisation. Yet, it remains somewhat unclear545

which of these might be the most effective and us-
able. To gain an overview, Kinkeldey et al. [65]
present a comprehensive review of uncertainty vi-
sualisation studies, focussing on research that mea-
sures interpretation accuracy and user confidence.550

Rather than repeating their findings in detail, we
summarise their conclusions:

• transparency tends to be more suitable than
colour saturation

• texture (on colour) appears to perform well555

• changes in greyscale may provoke more accu-
rate responses than changes in blur or line
dashing

• glyphs appear to be effective in 3D visualisa-
tions560

• grids show promise, but studies lack quantita-
tive data

• using a combined view of data and uncertainty
rather than adjacent maps might be preferable
due the reduced need for eye movement and565

better visual linking of data and quality, but
could lead to clutter

• animated properties may not perform better
than static ones

• intrinsic approaches appear most suitable for570

quantitative information, extrinsic ones for
qualitative information

Despite some trends, the results do not point to-
wards a definitive “champion” for expressing un-
certainty. Rather, all techniques seem to have their575

benefits and limitations, depending on the domain
the study was conducted in. Yet, there is evidence
that glyphs add clutter to the visual display [74] and
that they are better understood by experts than by
laymen [14]. Further, animation does not appear580

to be more effective than static representations [65]
and may even cause negative side-effects such as
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motion sickness or epileptic fits, if not used with
caution.
A limitation of the discussed studies may be that585

the majority appears to focus on experts (despite a
few exceptions including laymen) and that they use
relatively small numbers of participants [77]. Such a
limitation may not come as a surprise, as recruiting
experts can be difficult. But with the increasing use590

of Information Visualisation and Visual Analytics
in consumer applications [78], learning analytics [3],
and digital humanities [6, 20], it appears worthwhile
to explore whether the findings of previous work
regarding the performance of certain visual means595

to represent spatial uncertainty to (mostly) experts
in the domain of geospatial visualisation, may also
be applicable to laymen in the domain of Visual
Analytics.

3. Motivation600

The large array of frameworks and toolkits for
supporting non-data processing experts in visual-
ising large data sets for exploration and analysis
underlines the importance of supporting domain-
experts with powerful tools for analysing their find-605

ings in an easy-to-understand and visually appeal-
ing manner [79].
However, the discussed visual languages and visu-

alisation toolkits lack the graphical representation
of uncertainty. Whereas data and prediction re-610

sults are presented and visualised, their structural
problems, inaccuracies, and potential problems in
the underlying computational model, are not. This
highlights the need for a visual language or toolkit
that addresses this important aspect.615

With so many well-established frameworks avail-
able, it seems wasteful to build a complete approach
covering all steps of the visualisation process – this
has been done to very high standards in the dis-
cussed previous work. Rather, it may be more620

fruitful to devote time and effort to an “add-on”
for these existing toolkits. An add-on, that is in-
dependent of implementation and specification for-
malisms and can therefore “plug-in” to these toolk-
its in the form of a library of visual guidelines that625

covers the shortcomings they expose with regards to
representing uncertainty. While this could be done
in the form of graphical widgets, it seems more flex-
ible and future-proof to leave implementation to the
respective authors. Instead, we ought to strive to-630

wards providing an empirically founded guideline in
the form of a rule-book – the advice of which can be

implemented into existing and future applications
as required.

3.1. Why Transfer Knowledge?635

When defining a visual language – especially one
that is to work as an addition to established ones
– it is important to respect existing semantics that
stem from well-known, established domains. Doing
so will facilitate a novice’s apprehension of such a640

language, as it will allow them to build on previous
experience [80, 81]. A promising start may there-
fore be the examination of the transferability of se-
mantics between domains, where a certain meaning
is to be established in the “target” domain that,645

although needed, may not be as clearly defined and
researched as in the “source” domain. By adopt-
ing suitable elements as the result of such a trans-
fer, one may capitalise on existing knowledge and
meaning and thereby shorten the language’s defini-650

tion process.

An interesting example for such a transfer can be
found in the work of Celentano and Pittarello [82].
The authors employ cartographic metaphors as a
means for the design of a visual language for knowl-655

edge management. They argue their approach’s
helpfulness for representing shared knowledge to
a wide audience by employing a shared common
ground of meaning, known to users from their ev-
eryday lives. Following this, Yusoff and Salim [83]660

underline the importance of choosing a visualisation
that is interpreted the same way among all stake-
holders, especially in a collaborative environment.
According to their findings, a good visualisation
should provide shared social, cognitive, and task-665

solving support. A similar point is also made by
Cybulski et al. [84], who describe how the domain
of Visual Analytics in particular can build on pri-
mary metaphors derived from everyday experiences
and use these effectively in visualisations to support670

the user’s sense-making process. With regards to a
metaphor for uncertainty, Cybulski et al. state that
“certainty is firmness” [84], referencing the work of
Grady [85]. However, whereas most visual elements
can capitalise on well-defined visual analogies, the675

concept of uncertainty may not, as it describes a
state or feeling, rather than an existing item. But
how to express something whose existence is based
on absence (in the case of uncertainty stemming
from incomplete data), whose reason for being is680

known, but whose impact on its dependants is as
uncertain as the very results given by predictions
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that consider elements subject to this quantifiable,
yet somewhat intangible factor?
Formally describing this multi-faceted entity may685

be very difficult and, once fathomed, may still lack
expressiveness and meaning [13]. The answer, then,
may lie in the use of a visual language, where mul-
tiple layers of meaning can be compressed into a
system-independent graphical representation, that690

may say so much more than the sum of its alpha-
numeric counterparts. Capitalising on previous
knowledge and established meaning, we aim to de-
fine a visual guide for the representation of uncer-
tainty in Visual Analytics applications.695

3.2. Why Algorithm Mechanics?

Uncertainty can have many sources. However,
our first step is to determine the representation of
classification and prediction model uncertainty in
the visualisation of algorithm mechanics. When700

we use the term “algorithm mechanics”, we refer
to the workings of an algorithm. These can in-
clude the distribution of data points in a coordinate
system, the algorithm’s assumptions, its interpreta-
tions, and its results. Simply put, “algorithm me-705

chanics” comprises what the algorithm does, how it
interprets a data set, and how the data points relate
to its interpretation. An algorithm visualisation is
a depiction of this relationship.
As described in the introduction (Section 1),710

popular algorithms in Visual Analytics comprise
K-means clustering and Linear Regression. Data
points classified by these may be subject to at-
tribute uncertainty, meaning that their distance to
a centroid or regression line in a visualised spatial715

distribution impacts the adequacy of their attribu-
tion to the respective cluster or regression model.
This in turn directly influences the accuracy of the
analysis. Yet, simply indicating the overall model
accuracy of such an algorithm in a prediction may720

often not be enough for the user to make an in-
formed decision [13]. Instead, they should be able
to inspect the workings of the employed algorithm
to learn how well their data fits the classification
space.725

Being aware of data points whose classification or
explanation by a model is less certain, allows users
to gain a better understanding of the underlying
processes that lead to a particular result and en-
ables them to make adjustments to the algorithm730

or the data set to gradually improve the analysis.
This would be much more difficult with only a nu-
merical representation of the prediction accuracy,

for users would be left in the dark as to how this
number has been generated and how data points735

are attributed to a cluster or model [16]. Here,
the visualisation of uncertainty in the classification
space can directly address this issue and improve
the sense-making process. As interactively steering
algorithms is a key element of gaining insight [1, 5],740

we decided to focus on this step of the analytical
process for our research.

With the domain of geospatial visualisation hav-
ing a rich history in representing attribute uncer-
tainty in spatial distributions, we aim to define the745

first building block of our visual guide with the help
of an empirical study of this domain’s most popu-
lar visual means for this purpose, derived from our
review: Opacity, texture, contour lines, blur, and
grid (using variable grid sizes to display uncertainty750

[21]). As a result, we formulated a set of research
questions as defined in Section 1.1 to whose pursuit
the remainder of this article is dedicated.

4. Materials and Methods

To evaluate the suitability of the five visual755

means to represent uncertainty in the visualisation
of the mechanics of popular algorithms (Linear Re-
gression and K-means clustering), we conducted an
online study with 500 users via the Amazon Me-
chanical Turk service (AMT). Respecting AMT’s760

Terms of Service for worker anonymity, declaration
of personal data was optional, providing the fol-
lowing demographics: F: 23%, M: 25%, Unknown:
52%. To qualify for the study, users had to in-
dicate that they had no professional experience in765

data analysis and that they were reasonably profi-
cient in the English language. In the study, users
were shown a visualisation of either a Linear Re-
gression or a K-means clustering algorithm with a
distribution of data points (Figures 4, 5, 6, and 7,770

8, 9). Uncertainty was visualised using the five dif-
ferent visual means texture, opacity, blur, grid, and
contour lines. For the K-means clustering, these in-
dicated the certainty with which a data point may
be attributed to a certain cluster. For the Linear775

Regression, these represented the “goodness of fit”
of the regression line for the respective data point.

The points were highlighted at random and users
asked to assess their accuracy. Users had to click on
the highlighted point to acknowledge the task and780

then use a slider to enter its accuracy on a level from
one (low, 20%) to five (high, 100%). We chose to
divide the degree of certainty into five levels of 20%,
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as previous work suggests that users may struggle
with more than six levels of uncertainty [68]. As a785

result, uncertainty was visualised as follows:

• Opacity: Each level of uncertainty was rep-
resented by a loss of opacity over five adjacent
zones, away from the centroid or regression line
(Figure 6, left, and Figure 9, left). High lev-790

els of opacity meant high accuracy (low uncer-
tainty), low levels meant low accuracy (high
uncertainty).

• Contour lines: Each level of uncertainty was
represented by a change in the spacing of the795

dashes of the demarcation lines of five adja-
cent zones. The gaps between the dashes grew
wider, the further the zone was from the cen-
troid or regression line (Figure 5, right, and
Figure 8, right). Dense dashes meant high ac-800

curacy (low uncertainty), widely spaced dashes
meant low accuracy (high uncertainty).

• Texture: Each level of uncertainty was repre-
sented by a loss of texture resolution by a factor
of five. This was done over five adjacent zones,805

away from the centroid or regression line. Af-
ter a short user test, small adjustments were
made to the factors to make the difference be-
tween the five resolutions more evident (Figure
4, right, and Figure 7, right). A high resolu-810

tion (dense) texture meant high accuracy (low
uncertainty), a low resolution texture (sparse)
meant low accuracy (high uncertainty).

• Grid: Each level of uncertainty was repre-
sented by an increase in grid size over five dif-815

ferent sizes, away from the centroid or regres-
sion line (Figure 5, left, and Figure 8, left).
A small grid cell meant high accuracy (low un-
certainty), a large grid cell meant low accuracy
(high uncertainty).820

• Blur: Each level of uncertainty was repre-
sented by an increase in the blurriness of five
zones, away from the centroid or regression
line. The blur was created by calculating a
Gaussian blur with an increasing factor for825

each of the five zones separately and then com-
bining the visual output (Figure 6, right, and
Figure 9, right). A low level of blur meant high
accuracy (low uncertainty), a high level of blur
meant low accuracy (high uncertainty).830

The following properties were recorded: The ex-
pected response, the given response, and the task
completion time. Each level of accuracy had to be
assessed three times using three different points in
the visualisation, highlighted at random. As we835

used five levels of uncertainty – each level mapping
to an increase of 20% – users had to determine the
uncertainty of 15 points in total. Three additional
points with the same visual appearance were added
to simulate outliers, resulting in a total of 18 visible840

data points.
The visualisations of the algorithms were created

as follows: The Linear Regression used the Ordi-
nary Least Squares Algorithm on a dataset from
Anscombe’s quartet (I). The K-means clustering845

used 15 points from a sample data set from the
R statistics package. The visualisations were ren-
dered on a canvas the size of 400 x 400 pixels and
combined with one of the visual variables. Then
we overlaid the data points that users had to assess850

and added descriptions and controls. The whole ap-
plication had a size of 630 x 690 pixels. Recording
of all values started with the highlighting (blink-
ing) of a data point and ended once the user had
operated the slider and clicked the “next” button855

shown below the slider to begin the following task.
We conducted a between subjects study, assigning
50 users to each condition. Altogether, the study
had 10 conditions: One for each of the five visual
variables in either algorithm visualisation (Figures860

4, 5, 6, and 7, 8, 9).
Before the tasks started, users were shown a tu-

torial explaining the concept (for example what a
large grid size, level of blur, opacity, line style, or
texture granularity meant for a certain data point,865

depending on the condition) and had to complete
five training tasks in random order, one for each
level of uncertainty (Figure 4, left, and Figure 7,
left). The preceding description and tutorial were
the only source of training. No key explaining the870

visual mapping was shown during the main part of
the study. To ensure instructions and tasks were
clear, we iteratively tested the tutorial and appli-
cation design with three users from our research
group, none of whom spoke English as their first875

language.
AMT-based studies may be criticised for a re-

duced validity due to workers “spamming” re-
sponses [86]. We therefore limited participation
to workers with a minimum HIT approval rate of880

90%. Following the suggestion of previous work
[86, 87], we included five “gold standard questions”
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Figure 4: Left: Tutorial screen for quantifying uncertainty in the texture condition. Users had to identify five levels of
uncertainty, each corresponding to an increase of 20%. After being shown how to read the degree of uncertainty, users had to
complete five test questions (shown) in random order, one per level. Right: Task screen of the regression visualisation where
uncertainty is represented using changes in texture resolution. A user clicks on a blinking dot to then estimate the degree of
uncertainty using a slider at the bottom of the screen.

Figure 5: Left: Task screen of the regression visualisation where uncertainty is represented using changes in grid size. A
user clicks on a blinking dot to then estimate the degree of uncertainty using a slider at the bottom of the screen. Right:
Uncertainty visualisation in the regression in the contour lines condition.
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Figure 6: Left: Task screen of the regression visualisation where uncertainty is represented using changes in opacity. A user
clicks on a blinking dot to then estimate the degree of uncertainty using a slider at the bottom of the screen. Right: Uncertainty
representation in the regression in the blur condition. The blur was created by calculating a Gaussian blur with an increasing
factor for each of the five zones separately and then combining the visual output.

randomly into our task list. These were simple
mathematical questions, such as “What is 1 + 2?”,
which used the same slider as the “normal” tasks885

for the response to catch inobservant users who sim-
ply clicked through the tasks. Users who answered
more than one of these “gold standard questions”
incorrectly were removed from the data set.

Further, we monitored the answering pattern to890

validate that spammers did not give the same an-
swer to three consecutive questions. As this pro-
cedure lead to the removal of about 15% in three
of the conditions, we collected data from an addi-
tional 41 participants using the same design to ob-895

tain a similar number of valid users per condition,
totalling in 482 valid cases. Finally, we monitored
the time between task activation and response using
two timers. The first timer started as soon as the
task started and a data point began to blink. The900

second timer started once the user had clicked the
point and acknowledged the task. We plotted both
and compared them to typical task times measured
for a control group of five users from our depart-
ment. No differences were found, suggesting that905

users did pay attention to completing the tasks con-
siderately.

After users had completed all 20 tasks (15 data
point assessments, five “gold standard questions”)
they rated the visualisation of uncertainty in a ques-910

tionnaire using a five-point Likert scale (1: Strongly
disagree, 5: Strongly agree) based on the follow-
ing aspects: Visual appeal, confidence in their deci-
sions, ease of interpretation, and whether they liked
that uncertainty in particular was represented in915

a certain way (preference). We thus followed the
example of earlier work investigating the usability
of different visual variables in representing uncer-
tainty [88]. The study was running in a browser
using JavaScript and HTML. Questionnaires were920

realised using Google forms. The study took about
25 minutes to complete and users were rewarded
with one Dollar.

5. Results

This section will report the results of the study925

separately for each algorithm visualisation. In
particular, we evaluated correct interpretation
(how frequently the uncertainty of a data point was
correctly interpreted), accuracy offset (how “far
off” users were with their interpretation), and time930

needed to complete a task. This is followed by the
subjective data from the questionnaire, reporting
ease of use, confidence, appeal, and prefer-
ence.

For the vast majority of distributions, either935

Levene’s test for the equality of variances or the
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Figure 7: Left: Tutorial screen for quantifying uncertainty in the grid condition. Users had to identify five levels of uncertainty,
each corresponding to an increase of 20%. After being shown how to read the degree of uncertainty, users had to complete
five test questions (shown) in random order, one per level. Right: Task screen of the cluster visualisation where uncertainty
is represented using changes in texture resolution. A user clicks on a blinking dot to then estimate the degree of uncertainty
using a slider at the bottom of the screen.

Figure 8: Left: Task screen of the cluster visualisation where uncertainty is represented using changes in grid size. A user clicks
on a blinking dot to then estimate the degree of uncertainty using a slider at the bottom of the screen. Right: Uncertainty
representation in the cluster visualisation in the contour lines condition.

13



Figure 9: Left: Task screen of the cluster visualisation where uncertainty is represented using changes in opacity. A user clicks
on a blinking dot to then estimate the degree of uncertainty using a slider at the bottom of the screen. Right: Uncertainty
representation in the cluster visualisation in the blur condition. The blur was created by calculating a Gaussian blur with an
increasing factor for each of the five zones separately, and then combining the visual output.

Shapiro-Wilks tested turned out to be significant.
We therefore chose the Kruskal-Wallis test over the
ANOVA for these. By nature, the subjective data
collected via a Likert-scale does not meet paramet-940

ric assumptions. Therefore, a Kruskal-Wallis test
was used by default for this.
As a post-hoc test, we chose the non-parametric

Mann-Whitney test. Its results were Bonferroni-
Holm-corrected, based on the number of compar-945

isons in the respective condition. As the above pro-
cedure was applied to all calculations, it will not be
repeated in the following text, unless necessary.

5.1. K-Means Clustering

Correct interpretation: A Kruskal-Wallis test950

indicated a significant effect of visual means on the
correct interpretation (Chi-Square(4) = 61.94, p <
.001.) A series of post-hoc tests showed that most
correct decisions were made when using opacity
(median 83.33%) to represent uncertainty – more955

than using blur (median 40%), Z = 5.25, p < .001;
more than using grid (median 40%), Z = 5.66, p
< .001; more than using texture (median 60%), Z
= 3.23, p = .001; but not statistically significantly
more than when using contour lines (median960

73.33%). Contour lines elicited more correct
interpretations than blur, Z = 5.05, p < .001; more
than grid, Z = 5.61, p < .001; more than texture,

Z = 2.78, p = .006. The third-highest amount
of correct interpretations was found for texture,965

which was interpreted correctly more frequently
than grid, Z = 3.34, p = .001, and more frequently
than blur, Z = 2.64, p = .008. See Figure 10, left.

Accuracy offset: The Kruskal-Wallis test970

showed an effect of visual means on the degree
of accuracy offset, Chi-Square(4) = 14.51, p <
.001. Post-hoc tests revealed opacity to have the
lowest accuracy offset (median .2), meaning users’
interpretation of the degree of uncertainty of a data975

point was closest to the data point’s actual degree
of uncertainty using this visual means. The offset
was lower than that of texture (median .44), Z =
3.36, p = .001; lower than that of blur (median
.73), Z = 5.17, p < .001 ; lower than that of grid980

(median 0.93), Z = 5.88, p < .001. The visual
variable with the second lowest accuracy offset was
contour lines (median .27), which was lower than
that of blur, Z = 5.17, p < .001; lower than that
of texture, Z = 2.83, p = .005; lower than that of985

of grid, Z = 5.9, p < .001. The means with the
third lowest accuracy offset was texture, which had
a lower offset than blur, Z = 2.63, p = .009, and
a lower offset than grid, Z = 3.58, p < .001. See
Figure 10, middle.990
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Figure 10: K-means clustering visualisation: Quantitative results for the five visual variables. Left: Median percentage of
correctly retrieved uncertainty values. Middle: Median accuracy offset. Opacity and contour lines (lines) are most accurate.
Right: Median time spent per task per condition in milliseconds.

Figure 11: K-means clustering visualisation: Boxplots of the subjective feedback given on a five-point Likert scale for each
of the five visual variables. Top: Ease of use and confidence. Bottom: Appeal and preference. Overall, opacity and texture
received the most positive feedback.

Time needed: A Kruskal-Wallis test did not
reveal any statistically significant differences in
task completion time between the different visual
means. See Figure 10, right.995

Ease of use: The Kruskal-Wallis test indicated
an effect of visual means on the ease of interpre-
tation, Chi-Square(4) = 30.07, p < .001. The
post-hoc tests showed that opacity (median 4.5)1000

was rated the easiest visual variable to interpret
uncertainty – easier than blur (median 4), Z =
4.69, p < .001; easier than grid (median 4), Z =
4.25, p < .001; easier than texture (median 4), Z
= 3.5; p < .001; easier than contour lines (median1005

4), Z = 4, p = .007. The test also indicated
differences in the distribution of the responses
between contour lines and grid, contour lines and
blur, and texture and blur, but these were not
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statistically significant after the Bonferroni-Holm1010

correction. See Figure 11.

Confidence: A Kruskal-Wallis test showed an
effect of visual means on users’ confidence to have
made the right decision, Chi-Square(4) = 26.9, p <1015

.001. A series of post-hoc tests revealed that users
felt most confident when using opacity (median 5)
– more confident than when using blur (median 4,
Z = 4.77, p < .001), grid (median 4, Z = 3.68, p
< .001), and contour lines (median 4, Z = 3.04,1020

p = .002. Differences in the response distribution
between texture and blur, texture and opacity,
and contour lines and blur were also found, but
these were not statistically significant after the
Bonferroni-Holm correction. See Figure 11.1025

Appeal: The Kruskal-Wallis test indicated that
users rated the visual means to have a differing
visual appeal, Chi-Square(4) = 18.2, p = .001.
The post-hoc tests showed a tendency for opacity1030

(median 5) to be judged the most appealing –
more appealing than blur (median 4, Z = 3.61, p
< .001) and more appealing than grid (median 4,
Z = 3.64, p < .001). Differences between opacity
and contour lines were also found, but were not1035

statistically significant after the Bonferroni-Holm
correction. See Figure 11.

Preference: A Kruskal-Wallis test indicated an
effect of visual means on users stating they liked1040

it as a way to represent uncertainty, Chi-Square(4)
= 17.1, p = .002. The post-hoc tests hinted at
differences between the responses given for the var-
ious means, but these were not found to be statis-
tically significant after the Bonferroni-Holm correc-1045

tion. See Figure 11.

5.2. Linear Regression

Correct interpretation: A Kruskal-Wallis test
indicated a significant effect of visual means on the
correct interpretation of a data point’s uncertainty1050

(Chi-Square(4) = 58.21, p < .001.) A series of
post-hoc tests showed that more correct decisions
were made when using opacity (median 93.3%) –
more than when using blur (median 46.67%, Z =
5.49, p < .001), grid (median 46.67%, Z = 6.67,1055

p < .001), texture (median 60%, Z = 5.78, p <
.001), and contour lines (median 46.67%, Z = 6.1,
p < .001). Differences between the distributions
of texture and grid were also indicated, but
turned out not to be statistically significant after1060

the Bonferroni-Holm correction. See Figure 12, left.

Accuracy offset: The Kruskal-Wallis test
revealed an effect of visual means on the degree
of accuracy offset, Chi-Square(4) = 58.44, p1065

< .001. The post-hoc tests showed opacity to
have the lowest accuracy offset (median .07),
meaning users’ interpretation of the degree of
uncertainty of a data point was closest to the
data point’s actual degree of uncertainty using1070

opacity. It was thus significantly more accurate
than blur (median .67, Z = 5.31, p < .001), grid
(median .6, Z = 6.56, p < .001), contour lines
(median .8, Z = 5.92, p < .001), and texture
(median 0.47, Z = 5.45, p < .001). Texture1075

tended to be more accurate than grid and contour
lines, but differences were not significant after the
Bonferroni-Holm correction. See Figure 12, middle.

Time needed: Levene’s test was not significant1080

and an ANOVA did not show a statistically
significant difference in completion time between
the visual means. See Figure 12, right.

Ease of use: The Kruskal-Wallis test indicated1085

an effect of visual means on the ease of interpre-
tation, Chi-Square(4) = 21.3, p < .001. Despite
all visual means having a median ease-of-use of
four, the post-hoc tests revealed a significant
difference in the shape of the distribution of the1090

given responses. Figure 13 shows that opacity was
more frequently rated to be easy to interpret than
grid (Z = 3.38, p = .001), contour lines (Z =
3.4, p = .001), and blur (Z = 2.94, p = .003).
Similarly, texture was more frequently rated as1095

easy-to-interpret than grid (Z = 2.7, p = .007)
and contour lines (Z = 2.7, p = .007). Differences
between texture and blur were not statistically
significant after the Bonferroni-Holm correction.
See Figure 13.1100

Confidence: A Kruskal-Wallis test showed
an effect of visual means on users’ confidence to
have made the right decision, Chi-Square(4) =
17.43, p = .002. The post-hoc tests revealed that1105

despite equal medians (4) for all visual means,
users tended to have a higher confidence in their
judgement more frequently when using opacity
than using blur (Z = 3.5, p < .001) and contour
lines (Z = 3.14, p = .002). Differences in answer1110

distribution between texture and blur, as well as
texture and contour lines, and opacity and grid
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Figure 12: Regression visualisation: Quantitative results for the five visual variables. Left: Median percentage of correctly
retrieved uncertainty values. Middle: Median accuracy offset. Opacity and texture are most accurate. Right: Median time
spent per task and condition in milliseconds.

Figure 13: Regression visualisation: Boxplots of the subjective feedback given on a five-point Likert scale for each of the
five visual variables. Top: Ease of use and confidence. Bottom: Appeal and preference. Overall, opacity and texture received
the most positive feedback.

were not significant after the Bonferroni-Holm
correction. See Figure 13.

1115

Appeal: A Kruskal-Wallis test indicated that
users rated the visual means to have a different
visual appeal, Chi-Square(4) = 23.88, p < .001.
A series of post-hoc tests showed that users rated
opacity (median 4) more frequently to be visually1120

appealing than grid (median 3), Z = 4.1, p < .001,

and contour lines (median 4), Z = 3.62, p < .001.
Similarly, texture (median 4) was more frequently
rated as visually appealing than grid, Z = 2.93, p
= .003. Differences between texture and contour1125

lines were not statistically significant after the
Bonferroni-Holm correction. See Figure 13.

Preference: A Kruskal-Wallis test indicated an
effect of visual means on users stating that they1130
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liked it as a way to represent uncertainty, Chi-
Square(4) = 17.69, p = .001. Despite equal medians
for all visual variables (4), post-hoc tests showed
that users tended to express a higher degree of pref-
erence more frequently for opacity than for blur (Z1135

= 3.19, p = .001) and contour lines, Z = 2.93, p =
.003, and more frequently for texture than for blur,
Z = 2.84, p = .005. Similar trends were also re-
vealed for texture and opacity and the other visual
variables, but differences were not significant after1140

the Bonferroni-Holm correction. See Figure 13.

6. Discussion

Findings are discussed separately for each algo-
rithm visualisation, followed by research questions
and limitations.1145

6.1. K-Means Clustering

The quantitative results suggest that opacity and
contour lines are the visual means with the high-
est frequency of correct interpretation. Users es-
timated the degree of uncertainty correctly using1150

opacity in 83.3% of cases and in 73.3% of cases for
contour lines in comparison to texture (60%) and
blur and grid (both 40%).

These results are reflected by those regarding the
actual accuracy of users’ guesses: The “offset” of1155

these to the actual degree of uncertainty (spanning
a total of five levels) was lowest using opacity (.2
levels median offset), followed by contour lines (.26
levels), texture (.44 levels), blur (.73 levels), and
grid (.93 levels). However, differences in completion1160

time between the visual means do not appear to
exist. The good performance of opacity and contour
lines in the cluster visualisation seems likely to be
influenced by their clearly marked regions, offering
a simple means of comparison between the different1165

uncertainty zones. In contrast, these are harder
to discern in the texture and grid condition, and
hardly at all in the blur condition.

The quantitative performance of the visual means
for representing uncertainty is partially mirrored by1170

users’ subjective feedback for these. Overall, users
tended to rate opacity as easiest to use, with the
greatest appeal, confidence, and preference. How-
ever, differences between the other visualisations
appear less clear. See Figure 11.1175

6.2. Linear Regression

The quantitative results indicate that opacity is
the visual means with the highest frequency of
correct uncertainty estimation. Users interpreted
the degree of uncertainty correctly using opacity in1180

93.3% of cases and in 60% of cases for texture in
comparison to blur, contour lines, and grid, all with
a median correct estimation of 46.7%.

The frequency of correct estimation is mirrored
by the accuracy offset of the different visual means.1185

It is lowest for opacity (.067), followed by texture
(.47), grid (.6), blur (.67), and lines (.8). No differ-
ences in task completion time were found. Similar
to the cluster visualisation, the good performance
of opacity seems to be founded in its clear depiction1190

of the different zones. However, this is also given in
the contour lines and texture conditions – yet, ac-
curacy in these is much lower. This is surprising, as
contour lines performed comparatively well in the
cluster visualisation.1195

Despite similar medians in the subjective feed-
back, the Kruskal-Wallis tests indicated a differ-
ent distribution of responses for the various visual
means, suggesting that the means which performed
well quantitatively, were also perceived positively1200

more frequently. See Figure 13.

6.3. Answering the Research Questions

Can the most popular visual variables for
representing areal uncertainty in geospatial
visualisation be successfully applied to repre-1205

senting areal uncertainty in the visualisation
of algorithm mechanics for non-experts?

The answer to this questions is two-fold: The
results measured for opacity suggest that this visual1210

means can easily be transferred between the two
domains for representing quantifiable uncertainty,
regardless of the algorithm visualisation. Texture
had the same performance in both (median 60%
accuracy) and thereby also seems to be applicable1215

to this domain, albeit with less confidence.
However, other visual means appear less suitable.

While contour lines performed well in the K-means
clustering visualisation, they performed poorly in
the Linear Regression. Blur and grid performed1220

poorly in either visualisation, suggesting that these
two means may not be easily transferable.

We conclude that not all of the examined visual
means may be applied to the domain of algorithm
visualisation when aiming to quantify uncertainty,1225
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but that applicability may depend on the type of
algorithm to be visualised.

Which visual variable is the most suitable?
1230

Overall, the most suitable visual variable to
correctly interpret uncertainty is opacity, likely
due to its clear demarcation of uncertainty inter-
vals. For a cluster visualisation, the results sug-
gest the following ranking: Opacity (83.33%), con-1235

tour lines (73.33%), texture (60%), blur (40%),
grid (40%). For a Linear Regression, the order is
Opacity (93.3%), texture (60%), blur (46.67%), grid
(46.67%), contour lines (46.67%).

1240

Do our findings comply with those of pre-
vious work in the domain of geospatial
visualisation regarding efficiency and user
preference?

1245

In general, the results correspond to reports of
previous work, as our findings verify the general
link between performance and preference reported
by Senaratne et al. [88]. Other commonalities and
differences are as follows:1250

The positive results observed for opacity appear
congruent with findings of researchers in the do-
main of geospatial visualisation [65]. The results
also correspond to the reports on texture, which had
been shown to perform well [89], but with an accu-1255

racy of 60% in both algorithm visualisations not as
well as opacity, again corresponding to Kinkeldey
et al.’s report [65].
The performance of contour lines differs from

previous findings. In the case of the K-means visu-1260

alisation, performance was better than blur, thereby
contradicting the findings of Boukhelifa et al. [90],
who found the opposite in terms of user prefer-
ence when manipulating the “sketchiness” of con-
tour lines. However, in the Linear Regression visu-1265

alisation, performance of blur and lines was similar
(as was user preference).
Little quantitative data is available on the per-

formance of the variable grid [21]. Our findings
suggest that this is low in both algorithm visualisa-1270

tions and therefore best avoided if opacity or texture
are available. However, it may be useful as a more
general indicator of uncertainty, but future work is
required to validate this assumption.
MacEachren et al. [91] report a high degree of1275

intuitiveness for blur. While our studies indicate
that subjective feedback for this visual means was

not negative (median 4 in all aspects), quantita-
tive performance was poor, thus contradicting the
reports of Boukhelifa et al. [90]. Under the study1280

conditions it appears that blur may best be used
as a general indicator of uncertainty, rather than
a quantifier. Yet, it has to be taken into account
that our study has focussed on laymen. As previ-
ous work has predominantly focussed on experts,1285

the results may not be directly comparable.

6.4. Towards a Visual Guide for Representing Un-
certainty

By answering the research questions, the work
undertaken in this article has laid the foundations1290

for our visual guide for representing uncertainty.
Through an empirical study, we found that changes
in opacity over multiple “zones of confidence” are
a well-performing and well-perceived visual means
for visualising quantifiable uncertainty in the de-1295

piction of the mechanics of a K-means clustering
and a Linear Regression algorithm. The second-
most suitable visual variables for this purpose are
contour lines and texture respectively, albeit not as
effective.1300

Using a visual representation of uncertainty when
visualising an algorithm’s mechanics, allows users of
Visual Analytics applications to inspect how well
their data fits a model. Giving just a numerical
estimate of the prediction quality may neither be1305

very expressive [13], nor helpful with improving the
analysis. By directly visualising the algorithm me-
chanics and the classification or prediction accuracy
for data points in certain zones, users of these ap-
plications can make a much better and much more1310

informed decision. Allowing a user to investigate
how and why a classification or model has been
constructed will increase their understanding and
support them directly in the decision-making pro-
cess [16]. Using the visualisation, they may either1315

tweak the algorithm’s settings to better match the
data, or decide to remove outliers from the set and
thereby increase the model’s accuracy. Therefore,
visualising uncertainty, especially in this part of the
analysis, can provide the user with vital information1320

and directly contributes to improving the iterative
analysis.

As a result, the findings of our study are promis-
ing candidates for the first entries of our guidelines.
In particular, we recommend opacity (and contour1325

lines or texture, depending on the algorithm) for
representing classification and model uncertainty in
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the visualisation of algorithms that employ a spa-
tial distribution of data points as their classification
space.1330

While effective for interpretation by the user,
opacity may also be easy to parse by the machine,
as Visual Analytics is a bilateral affair [92]: A com-
puter could read a pixel’s alpha value (altered by
the user) to determine the degree of uncertainty.1335

Similarly, an algorithm using a human visual sys-
tem model [93] may interpret areas of varying opac-
ity as uncertain and adjust its classification result.
This way, opacity could work well for both entities,
human and machine. It thereby represents a pow-1340

erful first item in a possible library of visual means
that support researchers and practitioners in com-
municating uncertainty effectively.
However, due to the great number of different

types of uncertainty in Visual Analytics applica-1345

tions, the results of our study only represent a first
start to a growing catalogue of empirically validated
visual variables. Bit by bit we aim to extend our
guide to ultimately provide a comprehensive library
that can be used as an addition to existing frame-1350

works and toolkits to express all types of uncertain-
ties in visualisations created with these. Figure 14
shows how our visual guide may be combined with
such a toolkit or framework to extend it with well-
researched uncertainty representations.1355

Although only examined for communicating clas-
sification and prediction uncertainty in spatial dis-
tributions and thus requiring more research to vali-
date its potential for more general application, em-
ploying opacity in the wider Visual Analytics pro-1360

cess to represent uncertainty may work as follows
for the three main directions of communication in
an application:

• Computer to human: In data visualisa-
tions, points far away away from the distribu-1365

tional mean or with unclear properties could
use varying degrees of transparency. Similarly,
attribute selectors showing the most important
attributes contributing to a classification algo-
rithm could use changes in opacity to represent1370

quality and impact. Further, opacity “stacks”
well: In additive process visualisations (such as
the depiction of a decision tree or flow chart)
it may be useful to visualise diffusion and cul-
mination of uncertainty in certain layers built1375

from aggregated sources.

• Human to computer: Using varying degrees
of transparency, the user may mark certain

parts in the data visualisation that they find
less relevant or not representative due to their1380

domain knowledge. The machine may then
consider these differently in calculations. Sens-
ing the user’s possible goal, the computer could
use transparency to present alternative results
that may match a certain intent or bias the1385

machine has detected in the user’s behaviour.

• Human to human: The data-processing ex-
pert may mark problems or areas of question-
able relevance in the visualisation of data sets
using transparency to support the analysis of1390

the domain expert and vice versa.

6.5. Extending Previous Work

Using concrete examples, this section will dis-
cuss how our visual guide may be combined with a
range of existing toolkits and frameworks to extend1395

these with a much-needed module for uncertainty
representation, thereby providing hitherto lacking
functionality for these, increasing their scope and
power. We report this separately for data visual-
isation toolkits and frameworks, and specific algo-1400

rithm visualisation approaches.

6.5.1. Application in Frameworks and Toolkits for
Information Visualisation and Visual Ana-
lytics

In a JVLC special issue on “Information Visu-1405

alization in Machine Learning and Applications”
Ren et al. [8] presented DaisyViz, a toolkit for the
rapid prototyping of Information Visualisation ap-
plications for laymen. However, representations of
uncertainty in data or prediction models powering1410

the visualisations of the toolkit were not included,
making it difficult to interpret the output correctly.
Following this, regression or cluster-based visuali-
sations created with the tool could directly bene-
fit from our findings and use opacity to visualise1415

these uncertainties, as our visual library provides
the missing representations.

Other good examples of how existing applications
and frameworks for data visualisation can benefit
from our visual guide are VizDeck [10], Exploration1420

Views [9], and Voyager [11]. All three allow novices
to transform their data into powerful visualisations
for presentation and extended analysis, but lack
uncertainty depiction for algorithms. As our vi-
sual guide is designed to be an addition to existing1425

frameworks that acts as a point of reference for the
visualisation of uncertainty, it can directly plug into
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Figure 14: Depiction of the role of the proposed visual guide for representing uncertainty in the visualisation process. Designed
to be an addition to existing frameworks and toolkits, the guide “plugs” into these to extend their visual repository and to
provide lacking representations. Typical flow: The user provides data which is either directly visualised or used to build a
model for an algorithm. The chosen framework applies the most fitting visualisation automatically or manually from its existing
repository (as in [9, 10, 11]). Depending on the type of data or model visualised, an adequate representation of any uncertainties
is automatically applied using the “plugged-in” visual guide, based on empirical evidence. The display is enriched with this
additional layer of information and the decision-making thus improved. While the current repository only provides guidelines
for representing uncertainty in K-means clustering and Linear Regression visualisation, future work will extend the catalogue
to cover additional types of uncertainty, such as that in different types of algorithms or the data itself. These yet-to-be-defined
representations are shown as three question marks (???) in the figure.
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these and extend their visualisations for the benefit
of the user (Fig. 14).
Andrienko et al. [94] employ a Growth Ring Map1430

[95] to visualise the spatio-temporal distribution of
a set of photos obtained from Flickr. The results
are circular clusters of differing colour, distributed
over a map to show where and when photos were
taken. However, the visualised data could have in-1435

accurate or missing time stamps or geo-coordinates
caused by inaccurate measuring devices or user ne-
glect. Yet, the approach does not cater for the visu-
alisation of such uncertainties. Similar to our visu-
alisation of uncertainty in the K-means clustering1440

algorithm, opacity could be applied to parts of the
Growth Ring where these factors are an issue and
thereby help users to interpret the data correctly
using our visual guide.
In addition, the authors extract movement pat-1445

terns from the data visualised in the Growth Rings
and use vectors to represent common trajectories
to analyse movement. To be able to compare tra-
jectories, Andrienko et al. generalise locations by
transforming them into areas. This transformation1450

can lead to uncertainty in the groupings and re-
sulting trajectories, stemming from locations that
lie between two areas and whose attribution to one
or the other may be fuzzy. Our visual guide could
be helpful to visualise this uncertainty by render-1455

ing confidence intervals around the main vector (as
exemplified by our visualisation of a Linear Regres-
sion) using varying degrees of opacity and thereby
improve users’ sense-making process, allowing them
to interpret the data under consideration of poten-1460

tial uncertainties.
Avoiding cognitive overload in Visual Analytics

applications is an important issue to consider when
making these more approachable to laymen [15].
Bertini and Santucci [96] introduce a framework1465

for automatic clutter reduction in such applications
by parsing the visualisation for possibly irrelevant
artefacts based on their importance in the data.
However, the authors do not include the optimi-
sation of uncertainty representation. As glyph rep-1470

resentation of uncertainty is valued by experts, but
less so by laymen [72], Bertini and Santucci could
extend the functionality of their framework by us-
ing our results, which highlight the effectiveness
of intrinsic uncertainty representation for certain1475

algorithm mechanics: To improve the display for
laymen in particular, their extended methodology
would not only clear visual clutter caused by unim-
portant data, it would also improve perceivability

and scanability by non-data processing experts by1480

translating glyph-based, extrinsic uncertainty rep-
resentations into opacity-based, intrinsic represen-
tations [74].

6.5.2. Application in Algorithm Visualisation

Clementini [97] developed a geometric model for1485

representing uncertainty in “spatial objects of linear
type” [97]. Such a visualisation might be used for
visualising uncertainty in the boundaries of spatial
algorithms, such as K-means clustering or Linear
Regression, but no user study has been provided.1490

Our work, however, investigated user performance
for interpreting uncertainty in such algorithms us-
ing contour lines and showed limited retrieval ac-
curacy in comparison to opacity. It thereby may
offer a first evaluation of this means’ usability for1495

this purpose and suggests that while Clementini’s
approach may be powerful, usability seems limited.

In another visualisation, Gong et al. [98] employ
blur to visualise and calculate probability issues of
neighbouring locations in Voronoi diagrams. While1500

effective for calculation, the authors state that they
still need to validate the cognitive performance of
their blur-based visualisation. Our work under-
taken in this article for a K-means clustering visu-
alisation may address this by offering such an eval-1505

uation through analysing the results obtained from
the blur condition of our study, where we visualised
the degree of affinity of a point to a reference ob-
ject. We found that blur is not well suited for rep-
resenting correctly quantifiable uncertainty to users1510

in this type of visualisation. Instead, our findings
suggest that the layer for visual presentation should
aim to use a “rougher” visualisation that employs
varying levels of transparency, which have a more
clear-cut demarcation to their neighbouring areas,1515

such as when reducing the resolution of a gradient
by lowering the number of available colours. While
not necessarily as accurate in representation, our
results indicate that such a depiction is easier to
interpret by humans. For the internal computer-1520

based analysis, blur -based calculation and represen-
tation may still be used to satisfy the needs of both
entities.

In a more end-user focussed approach, Hansen
et al. [38] present an interactive software that sup-1525

ports the visualisation and steering of algorithms
for students. Through this, the authors could
demonstrate a positive impact on learning and un-
derstanding in comparison to traditional teaching
methods. However, uncertainty is not visualised1530
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in the software. Here our findings could be im-
plemented one-to-one to directly enhance students’
understanding of classification and prediction qual-
ity in K-means clustering and Linear Regression,
illustrating the practical value of our empirically1535

researched visual guide of visual means for repre-
senting various types of uncertainty.
Beyond this, our visual guide could support the

representation of uncertainty of movement and tra-
jectories in the work of Wang et al. [23]. Here the1540

authors allow users to explore the impact of changes
in certain variables on the position of points in a
scatter plot using a vector line. This represents the
potential positional trend of the points affected by
the change. This vector line is the result of a Lin-1545

ear Regression that predicts the possible “decision
flow”. Taking our work as an example, the authors
could visualise the confidence intervals of the re-
gressions using changes in opacity to represent pos-
sible deviations and uncertainties regarding the new1550

variable’s impact, supporting the user in making a
more accurate decision. Yet, care should be taken
for visual clarity not to suffer.

7. Conclusion and Future work

Depicting uncertainty in data and model repre-1555

sentations in a visual analysis is important to in-
crease user trust and interpretation accuracy [16].
Indicating to the user with what confidence the
data points are classified or how far they are spread
out from a model’s ideal distribution line, allows1560

users to understand why and how a decision was
made that led to a final result and its potential un-
certainty. Further, users can take action and adjust
algorithm parameters or remove problematic data
points to iteratively improve the end result – a core1565

feature of Visual Analytics applications [1].
While a range of frameworks and toolkits exists

to aid laymen in visualising data and processes,
[8, 10, 9, 11], they often lack an appropriate visual-
isation of uncertainty, despite this being important1570

for the sense-making process.
To work towards a guide for representing uncer-

tainty in Visual Analytics applications that can be
employed as an addition to existing work, we inves-
tigated the transferability of popular visual means1575

of uncertainty depiction from the domain of geospa-
tial visualisation to that of algorithm visualisation.
We focussed on algorithms whose mechanics and
portraiture – similar to elements in the geospatial
visualisation domain – use a spatial distribution to1580

indicate class or model affinity. Using a between-
subjects study with 500 participants in ten condi-
tions (five per algorithm) we found that opacity is
the most suitable visual means, followed by tex-
ture. Grid and blur do not appear suitable to repre-1585

sent quantifiable uncertainty whereas the usability
of contour lines appears to depend on the algorithm
visualised and is better for clusters than regressions.

By focussing on laymen, our study has illustrated
these means’ effectiveness and usability for commu-1590

nicating attribute uncertainty to non-data process-
ing experts and non-visualisation experts, such as
scholars from the field of digital humanities or stu-
dents. We thereby determined the first two building
blocks of our visual guide: Classification and model1595

uncertainty for K-means clustering and Linear Re-
gression are best communicated using changes in
opacity (Fig. 14). However, for this to be effective,
clear points of visual reference have to be given.
Simply showing a semi-transparent plane without1600

another visual element to compare it to is unlikely
to work well. Therefore, this means may only be
effective in communicating uncertainty if it is used
to highlight this in at least two adjacent zones in
the classification space.1605

Uncertainty has to be represented in a way that
corresponds to users’ expectations and knowledge
[84] so that it is easily understood by laymen [15].
In this regard, the good performance of opacity may
not only be founded in its clear demarcation of dif-1610

ferent zones of confidence, but also in its possible as-
sociation with something hazy that lacks clear def-
inition (in terms of its opaqueness). According to
Yusoff and Salim [83], an ideal visualisation fosters
a common understanding (social support), is per-1615

ceived and interpreted the same way by all (cog-
nitive support), and allows effective task-solving
(task support). Based on this, the use of opacity
for representing uncertainty in K-means clustering
and Linear Regression visualisations appears to be1620

a promising candidate: Users liked it as a means to
represent uncertainty (social support), found it vi-
sually appealing (social support), and were able to
infer uncertainty with high accuracy and low task
completion times (cognitive and task-solving sup-1625

port).
In addition to the initial definition of elements for

a visual guide to communicate uncertainty in Visual
Analytics applications, our results may serve as ev-
idence that findings from the domain of geospatial1630

visualisation may not be confined to the environ-
ment they were derived from. Rather, the validity
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of these findings may be extendible to that of other
areas of Information Visualisation, especially when
depicting spatial relationships and attributes.1635

Future work will therefore investigate additional
opportunities for transferring knowledge between
the two domains and explore how well the exam-
ined visual variables may perform in the repre-
sentation of uncertainty in visualisations of other1640

“spatial” classification algorithms, such as Monte
Carlo. Yet, to fill our visual guide with empiri-
cally validated representations of various types of
uncertainty, we need to trawl multiple domains for
other adequate visual means and rigorously test1645

their transferability and effectiveness. Our work
may thus only present a first step on a long road to-
wards the definition of such a guide. Yet, as small
as this step may be, it is a promising one, incit-
ing us to tread faster and further. Due to the in-1650

creasing extension of Visual Analytics and Infor-
mation Visualisation to the “soft sciences”, the ex-
tensive research into the transferability of domain-
specific knowledge from areas dominated by data-
processing experts to those with with a majority of1655

data-processing laymen, appears to be a worthwhile
endeavour.

8. Limitations

The study conducted in this article faces sev-
eral limitations, the most obvious of which may1660

be the use of AMT. As reported by previous work
[86, 87], recruiting users via this service poses chal-
lenges concerning the validity of responses. To ad-
dress this, we applied several measures as discussed
in Section 4, but results should still be interpreted1665

with caution. Another aspect to take into account is
the uncontrolled environment users completed the
study in. Although Web-based studies are com-
mon [65], it could not be ensured that users gave
the study their full attention or even consulted oth-1670

ers. Yet, the reasonable numbers of participants per
group (N=50) may help lower the impact of this
factor.

Based on Kinkeldey et al.’s [65] extensive review
of uncertainty user studies and the potential chal-1675

lenges of glyphs and animations, we limited our pri-
mary exploration to a set of the five most popular
visual variables for attribute uncertainty. To reduce
complexity, we only explored the research questions
with regards to the visualisation of K-means clus-1680

tering and Linear Regression. However, future work

could include other algorithms or methods, whose
mechanics also rely on spatial distributions.

Beyond this, it is unclear how well our findings
would work in a multidimensional analysis. If this1685

could be represented in a two-dimensional visualisa-
tion, then our findings are likely to be of use. How-
ever, in a three dimensional environment or where
the problem space cannot be translated into two di-
mensions, further work is necessary to validate our1690

results or to define additional rules regarding their
use.

Finally, we only examined a single type of uncer-
tainty (the attribution to a class or model), not mul-
tiple types, as is often the case in Visual Analytics1695

applications [72, 52]. Our study thus only conceptu-
alises uncertainty as such, and does not include dif-
ferentiation of specific types. Yet, this was done in
line with the suggestions given by Beard and Mack-
aness [99], who propose three levels of uncertainty1700

indicators: First, indicating that there is uncer-
tainty, second, showing the type of uncertainty, and
third, providing tools for the user to investigate the
reason of this uncertainty. As our study focussed on
probing the transferability of uncertainty represen-1705

tations from the domain of geospatial visualisation
to that of Visual Analytics to work towards the def-
inition of a visual guide for representing uncertainty
in this domain, we focussed on step one suggested
by Beard and Mackaness [99] with the extension1710

of showing the degree of uncertainty. However, we
only visualised five different levels of uncertainty,
as Kinkeldey et al. [68] reported that users struggle
reading this accurately for more than a maximum
of six levels. Whether our findings scale to a more1715

fine-gained differentiation is therefore unclear and
will be the subject of future work.
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